Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Microbiol Spectr ; : e0245722, 2023 Jan 31.
Article in English | MEDLINE | ID: covidwho-2223596

ABSTRACT

Since its emergence in late 2019, the coronavirus disease 2019 (COVID-19) pandemic has caused severe disruption to key aspects of human life globally and highlighted the need for timely, adaptive, and accessible pandemic response strategies. Here, we introduce the cell-free dot blot (CFDB) method, a practical and ultra-low-cost immune diagnostic platform capable of rapid response and mass immunity screening for the current and future pandemics. Similar in mechanism to the widely used enzyme-linked immunosorbent assays (ELISAs), our method is novel and advantageous in that (i) it uses linear DNA to produce the target viral antigen fused to a SpyTag peptide in a cell-free expression system without the need for traditional cloning and antigen purification, (ii) it uses SpyCatcher2-Apex2, an Escherichia coli-produced peroxidase conjugate as a universal secondary detection reagent, obviating the need for commercial or sophisticated enzyme conjugates, and (iii) sera are spotted directly on a nitrocellulose membrane, enabling a simple "dipping" mechanism for downstream incubation and washing steps, as opposed to individual processing of wells in a multiwell plate. To demonstrate the utility of our method, we performed CFDB to detect anti-severe acute respiratory syndrome coronavirus 2 nucleocapsid protein antibodies in precharacterized human sera (23 negative and 36 positive for COVID-19) and hamster sera (16 negative and 36 positive for COVID-19), including independent testing at a collaborating laboratory, and we show assay performance comparable to that of conventional ELISAs. At a similar capacity to 96-well plate ELISA kits, one CFDB assay costs only ~$3 USD. We believe that CFDB can become a valuable pandemic response tool for adaptive and accessible sero-surveillance in human and animal populations. IMPORTANCE The recent COVID-19 pandemic has highlighted the need for diagnostic platforms that are rapidly adaptable, affordable, and accessible globally, especially for low-resource settings. To address this need, we describe the development and functional validation of a novel immunoassay technique termed the cell-free dot blot (CFDB) method. Based on the principles of cell-free synthetic biology and alternative dot blotting procedures, our CFDB immunoassay is designed to provide for timely, practical, and low-cost responses to existing and emerging public health threats, such as the COVID-19 pandemic, at a similar throughput and comparable performance as conventional ELISAs. Notably, the molecular detection reagents used in CFDB can be produced rapidly in-house, using established protocols and basic laboratory infrastructure, minimizing reliance on strained commercial reagents. In addition, the materials and imaging instruments required for CFDB are the same as those used for common Western blotting experiments, further expanding the reach of CFDB in decentralized facilities.

2.
Viruses ; 13(11)2021 10 29.
Article in English | MEDLINE | ID: covidwho-1538543

ABSTRACT

Epizootic haemorragic disease (EHD) is an important disease of white-tailed deer and can cause a bluetongue-like illness in cattle. A definitive diagnosis of EHD relies on molecular assays such as real-time RT-qPCR or conventional PCR. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is a cost-effective, specific, and sensitive technique that provides an alternative to RT-qPCR. We designed two sets of specific primers targeting segment-9 of the EHD virus genome to enable the detection of western and eastern topotypes, and evaluated their performance in singleplex and multiplex formats using cell culture isolates (n = 43), field specimens (n = 20), and a proficiency panel (n = 10). The limit of detection of the eastern and western RT-LAMP assays was estimated as ~24.36 CT and as ~29.37 CT in relation to real-time RT-qPCR, respectively, indicating a greater sensitivity of the western topotype singleplex RT-LAMP. The sensitivity of the western topotype RT-LAMP assay, relative to the RT-qPCR assay, was 72.2%, indicating that it could be theoretically used to detect viraemic cervines and bovines. For the first time, an RT-LAMP assay was developed for the rapid detection of the EHD virus that could be used as either a field test or high throughput screening tool in established laboratories to control the spread of EHD.


Subject(s)
Hemorrhagic Disease Virus, Epizootic/isolation & purification , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Reoviridae Infections/diagnosis , Reoviridae Infections/virology , Animals , Bluetongue/virology , Cattle , DNA Primers/genetics , Deer , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcription , Sensitivity and Specificity
3.
Nat Commun ; 12(1): 724, 2021 02 01.
Article in English | MEDLINE | ID: covidwho-1387326

ABSTRACT

Recent advances in cell-free synthetic biology have given rise to gene circuit-based sensors with the potential to provide decentralized and low-cost molecular diagnostics. However, it remains a challenge to deliver this sensing capacity into the hands of users in a practical manner. Here, we leverage the glucose meter, one of the most widely available point-of-care sensing devices, to serve as a universal reader for these decentralized diagnostics. We describe a molecular translator that can convert the activation of conventional gene circuit-based sensors into a glucose output that can be read by off-the-shelf glucose meters. We show the development of new glucogenic reporter systems, multiplexed reporter outputs and detection of nucleic acid targets down to the low attomolar range. Using this glucose-meter interface, we demonstrate the detection of a small-molecule analyte; sample-to-result diagnostics for typhoid, paratyphoid A/B; and show the potential for pandemic response with nucleic acid sensors for SARS-CoV-2.


Subject(s)
Biosensing Techniques/methods , Gene Regulatory Networks/genetics , Glucose/analysis , Nucleic Acids/analysis , Point-of-Care Systems , Point-of-Care Testing , Biosensing Techniques/instrumentation , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Glucose/metabolism , Humans , Nucleic Acids/genetics , Pandemics , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Typhoid Fever/blood , Typhoid Fever/diagnosis , Typhoid Fever/microbiology
4.
Sci Rep ; 11(1): 9387, 2021 04 30.
Article in English | MEDLINE | ID: covidwho-1209076

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), calls for prompt and accurate diagnosis and rapid turnaround time for test results to limit transmission. Here, we evaluated two independent molecular assays, the Biomeme SARS-CoV-2 test, and the Precision Biomonitoring TripleLock SARS-CoV-2 test on a field-deployable point-of-care real-time PCR instrument, Franklin three9, in combination with Biomeme M1 Sample Prep Cartridge Kit for RNA 2.0 (M1) manual extraction system for rapid, specific, and sensitive detection of SARS-COV-2 in cell culture, human, and animal clinical samples. The Biomeme SARS-CoV-2 assay, which simultaneously detects two viral targets, the orf1ab and S genes, and the Precision Biomonitoring TripleLock SARS-CoV-2 assay that targets the 5' untranslated region (5' UTR) and the envelope (E) gene of SARS-CoV-2 were highly sensitive and detected as low as 15 SARS-CoV-2 genome copies per reaction. In addition, the two assays were specific and showed no cross-reactivity with Middle Eastern respiratory syndrome coronavirus (MERS-CoV), infectious bronchitis virus (IBV), porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis (TGE) virus, and other common human respiratory viruses and bacterial pathogens. Also, both assays were highly reproducible across different operators and instruments. When used to test animal samples, both assays equally detected SARS-CoV-2 genetic materials in the swabs from SARS-CoV-2-infected hamsters. The M1 lysis buffer completely inactivated SARS-CoV-2 within 10 min at room temperature enabling safe handling of clinical samples. Collectively, these results show that the Biomeme and Precision Biomonitoring TripleLock SARS-CoV-2 mobile testing platforms could reliably and promptly detect SARS-CoV-2 in both human and animal clinical samples in approximately an hour and can be used in remote areas or health care settings not traditionally serviced by a microbiology laboratory.


Subject(s)
COVID-19/diagnosis , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , Animals , Buffers , Cricetinae , Humans , Mobile Applications , Reagent Kits, Diagnostic , SARS-CoV-2/genetics , Sensitivity and Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL